A Microscale Model for Combined CO2 Diffusion and Photosynthesis in Leaves

نویسندگان

  • Quang Tri Ho
  • Pieter Verboven
  • Xinyou Yin
  • Paul C. Struik
  • Bart M. Nicolaï
چکیده

Transport of CO(2) in leaves was investigated by combining a 2-D, microscale CO(2) transport model with photosynthesis kinetics in wheat (Triticum aestivum L.) leaves. The biophysical microscale model for gas exchange featured an accurate geometric representation of the actual 2-D leaf tissue microstructure and accounted for diffusive mass exchange of CO(2.) The resulting gas transport equations were coupled to the biochemical Farquhar-von Caemmerer-Berry model for photosynthesis. The combined model was evaluated using gas exchange and chlorophyll fluorescence measurements on wheat leaves. In general a good agreement between model predictions and measurements was obtained, but a discrepancy was observed for the mesophyll conductance at high CO(2) levels and low irradiance levels. This may indicate that some physiological processes related to photosynthesis are not incorporated in the model. The model provided detailed insight into the mechanisms of gas exchange and the effects of changes in ambient CO(2) concentration or photon flux density on stomatal and mesophyll conductance. It represents an important step forward to study CO(2) diffusion coupled to photosynthesis at the leaf tissue level, taking into account the leaf's actual microstructure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study.

Survival and growth of terrestrial plants is negatively affected by complete submergence. This is mainly the result of hampered gas exchange between plants and their environment, since gas diffusion is severely reduced in water compared with air, resulting in O2 deficits which limit aerobic respiration. The continuation of photosynthesis could probably alleviate submergence-stress in terrestria...

متن کامل

Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models

Foliage photosynthetic and structural traits were studied in 15 species with a wide range of foliage anatomies to gain insight into the importance of key anatomical traits in the limitation of diffusion of CO2 from substomatal cavities to chloroplasts. The relative importance of different anatomical traits in constraining CO2 diffusion was evaluated using a quantitative model. Mesophyll conduct...

متن کامل

Localization of (photo)respiration and CO2 re-assimilation in tomato leaves investigated with a reaction-diffusion model

The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. Howeve...

متن کامل

Open access – Invited review THIS ARTICLE IS PART OF A SPECIAL ISSUE ENTITLED ‘FLOODING STRESS’ A perspective on underwater photosynthesis in submerged terrestrial wetland plants

Background and aims Wetland plants inhabit flood-prone areas and therefore can experience episodes of complete submergence. Submergence impedes exchange of O2 and CO2 between leaves and the environment, and light availability is also reduced. The present review examines limitations to underwater net photosynthesis (PN) by terrestrial (i.e. usually emergent) wetland plants, as compared with subm...

متن کامل

Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations.

We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012